134 research outputs found

    Adjective Density as a Text Formality Characteristic for Automatic Text Classification: A Study Based on the British National Corpus

    Get PDF
    PACLIC 23 / City University of Hong Kong / 3-5 December 200

    Enhanced Genre Classification through Linguistically Fine-Grained POS Tags

    Get PDF

    Integrated Flight/Structural Mode Control for Very Flexible Aircraft Using L1 Adaptive Output Feedback Controller

    Get PDF
    This paper explores application of adaptive control architecture to a light, high-aspect ratio, flexible aircraft configuration that exhibits strong rigid body/flexible mode coupling. Specifically, an L(sub 1) adaptive output feedback controller is developed for a semi-span wind tunnel model capable of motion. The wind tunnel mount allows the semi-span model to translate vertically and pitch at the wing root, resulting in better simulation of an aircraft s rigid body motion. The control objective is to design a pitch control with altitude hold while suppressing body freedom flutter. The controller is an output feedback nominal controller (LQG) augmented by an L(sub 1) adaptive loop. A modification to the L(sub 1) output feedback is proposed to make it more suitable for flexible structures. The new control law relaxes the required bounds on the unmatched uncertainty and allows dependence on the state as well as time, i.e. a more general unmatched nonlinearity. The paper presents controller development and simulated performance responses. Simulation is conducted by using full state flexible wing models derived from test data at 10 different dynamic pressure conditions. An L(sub 1) adaptive output feedback controller is designed for a single test point and is then applied to all the test cases. The simulation results show that the L(sub 1) augmented controller can stabilize and meet the performance requirements for all 10 test conditions ranging from 30 psf to 130 psf dynamic pressure

    Adaptive Control for Uncertain Nonlinear Multi-Input Multi-Output Systems

    Get PDF
    Systems and methods of adaptive control for uncertain nonlinear multi-input multi-output systems in the presence of significant unmatched uncertainty with assured performance are provided. The need for gain-scheduling is eliminated through the use of bandwidth-limited (low-pass) filtering in the control channel, which appropriately attenuates the high frequencies typically appearing in fast adaptation situations and preserves the robustness margins in the presence of fast adaptation

    Parameter estimation and control of nonlinearly parameterized systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2004.Includes bibliographical references.Parameter estimation in nonlinear systems is an important issue in measurement, diagnosis and modeling. The goal is to find a differentiator free on-line adaptive estimation algorithm which can estimate the internal unknown parameters of dynamic systems using its inputs and outputs. This thesis provides new algorithms for adaptive estimation and control of nonlinearly parameterized (NLP) systems. First, a Hierarchical Min-max algorithm is invented to estimate unknown parameters in NLP systems. To relax the strong condition needed for the convergence in Hierarchical Min-max algorithm, a new Polynomial Adaptive Estimator (PAE) is invented and the Nonlinearly Persistent Excitation Condition for NLP systems, which is no more restrictive than LPE for linear systems, is established for the first time. To reduce computation complexity of PAE, a Hierarchical PAE is proposed. Its performance in the presence of noise is evaluated and is shown to lead to bounded errors. A dead-zone based adaptive filter is also proposed and is shown to accurately estimate the unknown parameters under some conditions. Based on the adaptive estimation algorithms above, a Continuous Polynomial Adaptive Controller (CPAC) is developed and is shown to control systems with nonlinearities that have piece-wise linear parameterizations. Since large classes of nonlinear systems can be approximated by piece-wise linear functions through local linearization, it opens the door for adaptive control of general NLP systems. The robustness of CPAC under bounded output noise and disturbances is also established.by Chengyu Cao.Ph.D

    Flight Test of L1 Adaptive Control Law: Offset Landings and Large Flight Envelope Modeling Work

    Get PDF
    This paper presents new results of a flight test of the L1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented include control law evaluation for piloted offset landing tasks as well as results in support of nonlinear aerodynamic modeling and real-time dynamic modeling of the departure-prone edges of the flight envelope

    Robust Adaptive Control of Linear Parameter-Varying Systems with Unmatched Uncertainties

    Full text link
    This paper presents a robust adaptive control solution for linear parameter-varying (LPV) systems with unknown input gain and unmatched nonlinear (state- and time-dependent) uncertainties based on the L1\mathcal{L}_1 adaptive control architecture and peak-to-peak gain (PPG) analysis/minimization from robust control. Specifically, we introduce new tools for stability and performance analysis leveraging the PPG bound of an LPV system that is computable using linear matrix inequality (LMI) techniques. A piecewise-constant estimation law is introduced to estimate the lumped uncertainty with quantifiable error bounds, which can be systematically improved by reducing the estimation sampling time. We also present a new approach to attenuate the unmatched uncertainty based on the PPG minimization that is applicable to a broad class of systems with linear nominal dynamics. In addition, we derive transient and steady-state performance bounds in terms of the input and output signals of the actual closed-loop system as compared to the same signals of a virtual reference system that represents the possibly best achievable performance. Under mild assumptions, we prove that the transient performance bounds can be uniformly reduced by decreasing the estimation sampling time, which is subject only to hardware limitations. The theoretical development is validated by extensive simulations on the short-period dynamics of an F-16 aircraft
    • …
    corecore